Hybrid Fuzzy Modelling for Model Predictive Control
نویسندگان
چکیده
Model predictive control (MPC) has become an important area of research and is also an approach that has been successfully used in many industrial applications. In order to implement a MPC algorithm, a model of the process we are dealing with is needed. Due to the complex hybrid and nonlinear nature of many industrial processes, obtaining a suitable model is often a difficult task. In this paper a hybrid fuzzy modelling approach with a compact formulation is introduced. The hybrid system hierarchy is explained and the Takagi–Sugeno fuzzy formulation for the hybrid fuzzy modelling purposes is presented. An efficient method for identifying the hybrid fuzzy model is also proposed. A MPC algorithm suitable for systems with discrete inputs is treated. The benefits of the MPC algorithm employing the hybrid fuzzy model are verified on a batch-reactor simulation example: a comparison between the proposed modern intelligent (fuzzy) approach and a classic (linear) approach was made. It was established that the MPC algorithm employing the proposed hybrid fuzzy model clearly outperforms the approach where a hybrid linear model is used, which justifies the usability of the hybrid fuzzy model. The hybrid fuzzy formulation introduces a powerful model that can faithfully represent hybrid and nonlinear dynamics of systems met in industrial practice, therefore, this approach demonstrates a significant advantage for MPC resulting in a better control performance.
منابع مشابه
Hybrid fuzzy model-based predictive control of temperature in a batch reactor
Processes in industry, such as batch reactors, often demonstrate a hybrid and non-linear nature. Model predictive control (MPC) is one of the pproaches that can be successfully employed in such cases. However, due to the complexity of these processes, obtaining a suitable model is ften a difficult task. In this paper a hybrid fuzzy modelling approach with a compact formulation is introduced. Th...
متن کاملFeedforward control of a class of hybrid systems using an inverse model
In this paper we describe the design of a control algorithm for MISO systems, which can be modelled as hybrid fuzzy models. Hybrid fuzzy models present a convenient approach to modelling nonlinear hybrid systems. We discuss the formulation of a hybrid fuzzy model, its structure and the identification procedure. This is followed by a derivation of the inverse model and its implementation in the ...
متن کاملHybrid Convolution Model and its Application in Predictive pH Control
This paper presents a new method for synthesising chemical process models that combines prior knowledge and fuzzy models. The hybrid convolution model consists of a fuzzy model based steady-state, and an impulse response model based dynamic part. Prior knowledge enters to the dynamic part as a resident time distribution model of the process. The proposed approach is applied in the modelling and...
متن کاملIdentification of a PWA Model of a Batch Reactor for Model Predictive Control
The complex hybrid and nonlinear nature of many processes that are met in practice causes problems with both structure modelling and parameter identification; therefore, obtaining a model that is suitable for MPC is often a difficult task. The basic idea of this paper is to present an identification method for a piecewise affine (PWA) model based on a fuzzy clustering algorithm. First we introd...
متن کاملAdaptive Online Traffic Flow Prediction Using Aggregated Neuro Fuzzy Approach
Short term prediction of traffic flow is one of the most essential elements of all proactive traffic control systems. Although various methodologies have been applied to forecast traffic parameters, several researchers have showed that compared with the individual methods, hybrid methods provide more accurate results . These results made the hybrid tools and approaches a more common method for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Intelligent and Robotic Systems
دوره 50 شماره
صفحات -
تاریخ انتشار 2007